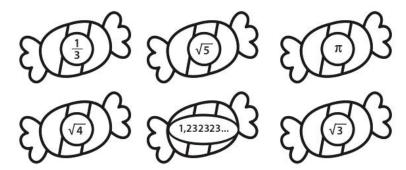
Bimestre: I Número de clase: 6 Matemáticas 8

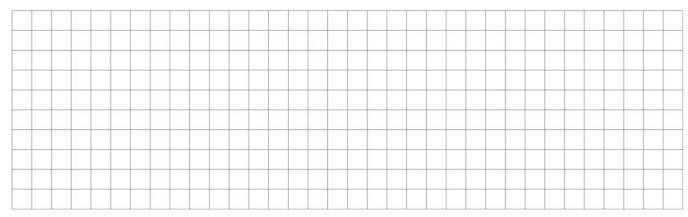
Clase 6

Tema: Números irracionales. Representación gráfica y teorema de Pitágoras

Actividad 15

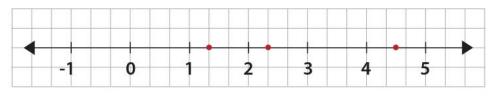
Coloree con color azul los dulces que están marcados como números irracionales y con verde los que están marcados con números racionales. Explique cada elección.

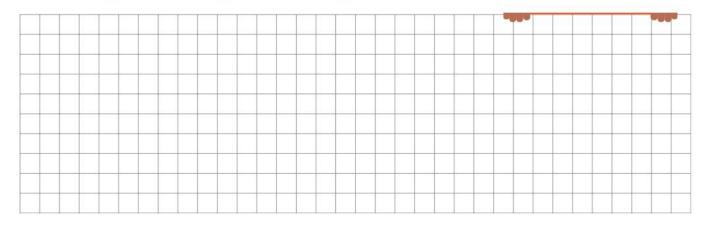




Actividad 16

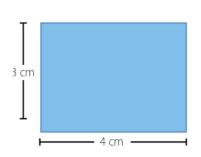
Relacione cada número irracional con el punto que representa en la recta numérica.

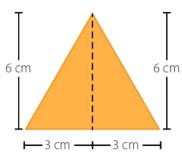




Actividad 17

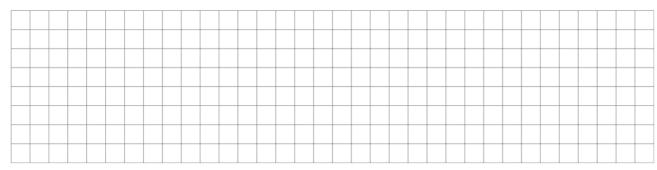
Encuentre la medida de la diagonal del rectángulo y la altura del triángulo. Luego, escriba a qué conjuntos numéricos pertenece cada resultado.





Use el teorema de Pitágoras:

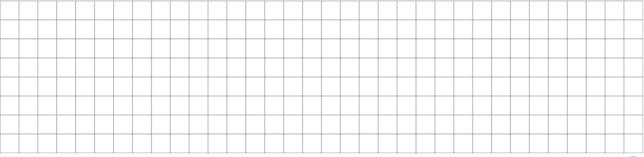
$$c^2 = a^2 + b^2$$



Actividad 18

En la siguiente tabla se muestra el perímetro de varias circunferencias y su respectivo diámetro. Divida el perímetro de cada circunferencia entre el diámetro de la misma y escriba el resultado.

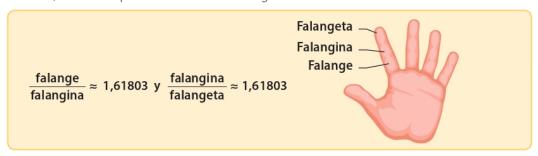
Perímetro (cm)	Diámetro (cm)	Perímetro ÷ diámetro
31,42	10	
12,57	4	
43,98	14	
21,99	7	



Lea de manera atenta el siguiente texto:

¿Qué significa tener manos perfectas?

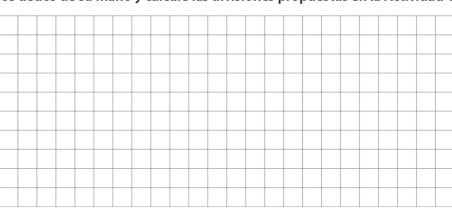
Matemáticamente, las manos perfectas conservan la siguiente relación:



Si esto se cumple, se dice que las manos tienen "una medida perfecta". Este descubrimiento fue hecho por los griegos y se aplica como medida de la proporción en diferentes partes del cuerpo. Recibe el nombre de **número** de **oro** o **número áureo** y representa la armonía y la belleza.

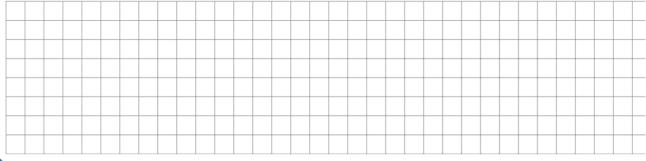
Actividad 20

Mida con una regla la longitud de la falange, la falangina y la falangeta de los dedos de su mano y calcule las divisiones propuestas en la Actividad 19.



¿Puede afirmar que su mano tiene medidas perfectas?

Mida la falange, la falangina y la falangeta de los dedos de la mano de un compañero; luego, calcule la relación y determine si la mano de su compañero tienen medidas perfectas.



Relacione cada número irracional con su expresión decimal aproximada.

	5,0990195135927848	
$\sqrt{30}$		$\sqrt{32}$
	5,2915026221291812	
	5,4772255750516611	
$\sqrt{33}$		√28
	5,6568542494923802	
	5,5677643628300219	
√ 26		√31
	5,7445626465380287	

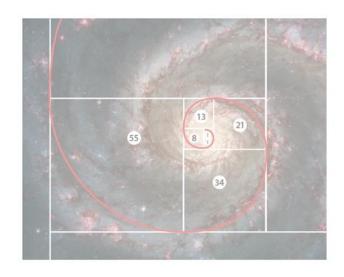
Actividad 22

Lea de manera atenta el siguiente texto:

Una forma de aproximarse al número áureo es por medio de la llamada **sucesión de Fibonacci**. Algunos números de esta sucesión son los siguientes:

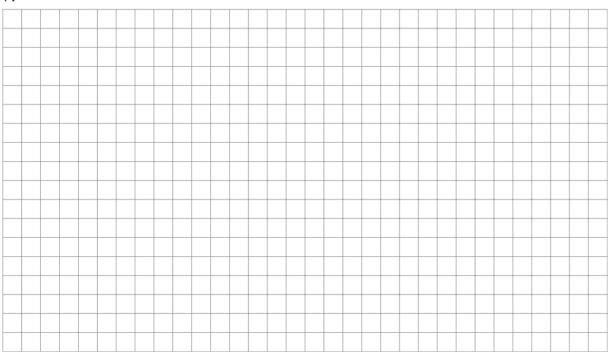
Un número de la sucesión de Fibonacci se forma como la suma de los dos anteriores; así, el siguiente número de la sucesión se forma como 13 + 21 = 34.

Si se dividen dos números consecutivos de la sucesión de Fibonacci el resultado se aproxima al número áureo y entre más grandes sean los números que se dividen, más cercana es la aproximación.



Lo asombroso de la sucesión es que está presente prácticamente en todas las cosas del Universo: las semillas de las flores y las galaxias, entre otras.

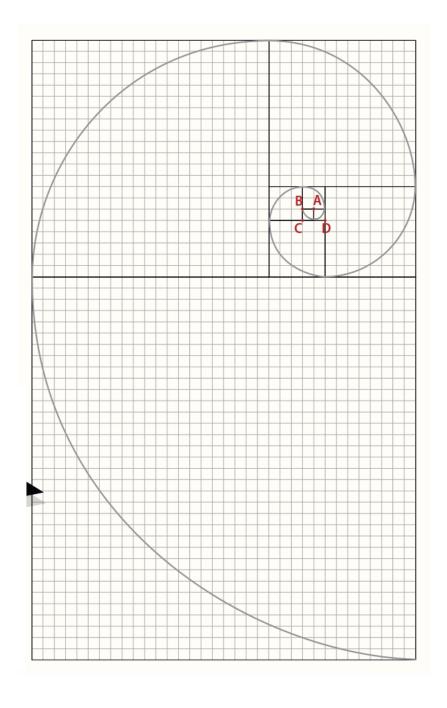
Construya los siguientes números irracionales.



Actividad 24

Siga los pasos para construir La espiral de Durero.

- ① Construya sobre una hoja cuadriculada de su cuaderno un rectángulo de 34 cuadrados de base por 55 cuadrados de altura.
- Construya dentro del rectángulo los cuadrados que se muestran en la espiral de la imagen. Cuente cuidadosamente el número de cuadros.
- Ubique el compás en el punto A que se marca en la primera imagen.
- Luego, trace la espiral así:
 - Desde el punto inicial A, trace un semi círculo.
 - Ubique el compás en el punto B, amplíe el radio y haga un cuarto de círculo.
 - Repita este proceso ubicando el compás en el punto C, luego en el D y comience el proceso de nuevo desde el punto A, luego en el B, etc., hasta completar la figura.



Actividad 25

Marque frente a cada número si es racional o irracional. Justifique su respuesta.

1	√5		Racional		Irracional	
_		_		$\overline{}$		

$$\frac{\sqrt{2}}{2}$$
 Racional Irracional _____

Actividad 26

 $\sqrt{7} = 2,64575$

Escriba el valor aproximado que cree que tiene cada raíz cuadrada. Use cuatro cifras decimales para la aproximación.

$$\sqrt{4} = \underline{\qquad}$$

$$\sqrt{5} = 2,23606$$

$$\sqrt{6} = \underline{\qquad}$$

$$\sqrt{17} = 4,123105$$

$$\sqrt{18} = \frac{1}{\sqrt{19}} = 4,35889$$

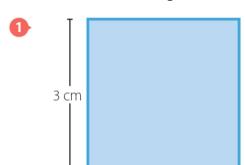
$$\sqrt{20} = \frac{1}{\sqrt{21}} = 4,58257$$

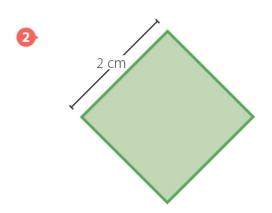
 $\sqrt{16} = 4$

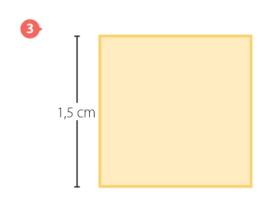
Observe los valores dados para poder hacer la aproximación.

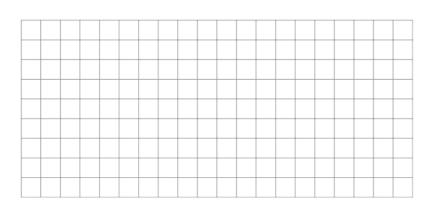
Actividad 27

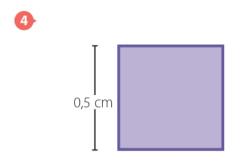
Halle la medida de la diagonal de cada cuadrado usando el teorema de Pitágoras.

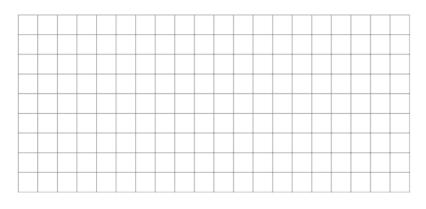












Resumen

Definición de número irracional

Los **números irracionales** son aquellos que no se pueden expresar como razones entre números enteros y tienen como característica que su expresión decimal es infinita y no periódica. Este conjunto se representa con la letra I.

Algunos irracionales son:

$$\sqrt{2}$$
 $\sqrt{3}$ π $\frac{\sqrt{2}}{2}$

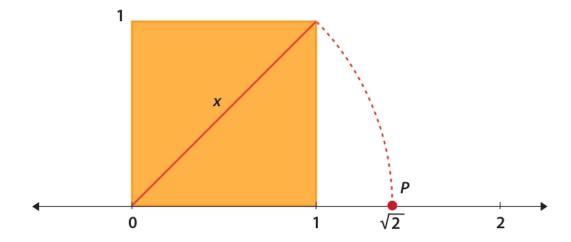
Irracionales conocidos

Aunque los números irracionales son "extraños" hay varios de ellos que se usan con mucha frecuencia como:

- T Describe la relación entre el perímetro de una circunferencia y su diámetro.
- Se le llama así en honor al matemático Leonard Euler. Se utiliza con frecuencia en las funciones exponenciales.
- 🗘 Llamado el número de oro o el número aéreo. Representa las proporciones perfectas en la naturaleza.

Representación de $\sqrt{2}$

A continuación se muestra la construcción de $\sqrt{2}$ en la recta numérica.



Desafío matemático

¿El perro podrá alcanzar un plato de comida ubicado a 6 metros? Explique su respuesta.

Si el reloj de una torre da 3 campanadas en 2 segundos, ¿en cuánto tiempo dará 6 campanadas?

